Model Selection, confidence and Scaling in Predicting Chaotic Time-Series

نویسنده

  • Erik M. Bollt
چکیده

Assuming a good embedding and additive noise, the traditional approach to time-series embedding prediction has been to predict pointwise by (usually linear) regression of the k-nearest neighbors; no good mathematics has been previously developed to appropriately select the model (where to truncate Taylor’s series) to balance the conflict between noise fluctuations of a small k, and large k data needs of fitting many parameters of a high ordered model. We present a systematic approach to: (1) select the statistically significant neighborhood for a fixed (usually linear)model, (2) give an unbiased estimate of predicted mean response together with a statement of quality of the prediction in terms of confidence bands.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

Chaotic Analysis and Prediction of River Flows

Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...

متن کامل

A Novel Fuzzy Based Method for Heart Rate Variability Prediction

Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...

متن کامل

Predicting the Incidence and Trend of Breast Cancer Using Time Series Analysis for 2007-2016 in Qazvin

Introduction: Breast cancer is the most common cancer and the second leading cause of death in women worldwide. The aim of this study was to analyze the trend and predict the incidence of breast cancer using time series analysis. Methods: In this study, data on breast cancer incidence in Qazvin province between 2007 and 2016 were analyzed using time series analysis with autoregressive integrate...

متن کامل

Stochastic Monthly Rainfall Time Series Analysis, Modeling and Forecasting ( A cas study: Ardebilcity

Rainfall is the main source of the available water for human. Predicting the amount of the future rainfall is useful for informed policies, planning and decision making that will help potentially make optimal and sustainable use of available water resources. The main aim of this study was to investigate the trend and forecast monthly rainfall of selected synoptic station in Ardabil province usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000